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1 Introduction

Over the past year, non-relativistic conformal (NRC) field theories have attracted a lot of

attention, primarily driven by the prospect of tailoring the AdS/CFT correspondence so

that it may be used as a tool to describe condensed matter systems in a laboratory environ-

ment. These systems are described by Schrödinger symmetry, which is a non-relativistic

version of conformal symmetry. The corresponding algebra is generated by Galilean trans-

formations, an anisotropic scaling of space, x → λx, and time, x+ → λzx+, where z > 0

is a real number usually referred to as the dynamical exponent, and an additional special

conformal transformation when z = 2. For NRC field theories with one time and d spatial

dimensions, the corresponding symmetry algebra will be denoted Schz(1, d).

Gravity duals for NRC field theories were initially proposed in [1, 2] and were subse-

quently embedded in type IIB in [3–5] and D = 11 supergravity in [6]. The IIB solutions

of [3–5] with z = 2 are obtained by coordinate transformations which deform the three-form

flux, but in the process break supersymmetry. Other techniques that have been employed in

the construction of NRC gravity duals in type IIB and D = 11 supergravity include metric

deformations [7] and uplift of suitable solutions of the lower dimensional theories to which

the D = 10, 11 supergravities on Sasaki-Einstein manifolds consistently truncate [5, 6].

Some solutions obtained by these two methods do preserve supersymmetry [7, 8]. Solu-

tions pursued via uplift turn out to permit only set dynamical exponents, whereas more

general constructions, still based on Sasaki-Einstein spaces [8–10], allow for richer classes

of solutions with many different values of z, including z = 2 . For a selection of other

works on gravity duals of NRC field theories in various dimensions, both supersymmetric

and non-supersymmetric, see [11].

In all these cases, the D = 10 or D = 11 metric dual to an NRC field theory in spatial

dimension d corresponds to a deformation of a given D-dimensional solution containing
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(d+3)-dimensional Anti-de Sitter space, that breaks the original AdSd+3 isometry so(2, d+

2) down to its Schz(1, d) subalgebra. The purpose of this paper is to obtain D = 11

supergravity solutions with Schz(1, 2) symmetry, associated to the AdS5×KE6 class of D =

11 supergravity solutions with KE6 a six-dimensional Kähler-Einstein space of positive

curvature [12, 13]. Interestingly enough, despite the lack of supersymmetry of the general

AdS5 × KE6 solution1 for arbitrary KE6, the special case when KE6 is CP 3 has recently

been shown to be classically stable [15]. We expect our Schz(1, 2)-invariant solutions,

dual to NRC field theories in spatial dimension d = 2, to inherit the non-supersymmetric

character of the original AdS5 × KE6 solutions.

As mentioned earlier, the first examples of gravitational solutions dual to NRC field

theories were found in lower-dimensional theories of gravity coupled to a massive vector

field [1]. One benefit of much recent work on consistent Kaluza-Klein (KK) truncations [16–

18] is that these solutions may be uplifted to type IIB [5] and D = 11 supergravity set-

tings [6]. In a similar fashion, we will first show, in section 2, that there exists a consistent

KK truncation of D = 11 supergravity on KE6 to a D = 5 theory involving a massive

vector and a massive scalar. We subsequently uplift, in section 3, a solution to the D = 5

theory to eleven-dimensions to find a new M-Theory solution with dynamical exponent

z = 4. In section 4 we perform a generalisation to a class of NRC solutions obtained as

deformations of the original AdS5×KE6 solution that, in general, cannot be obtained from

uplift. In this class, we will find new Schz(1, 2)-invariant M-Theory solutions with different

dynamical exponents z, including z = 2. Like the analog constructions in [7–10], the met-

ric of all these solutions will maintain the KE6 part of the original AdS5 × KE6. Further

generalisations should be possible allowing for more general internal geometries [19].

The AdS5×KE6 geometries that we take as starting point for our analysis are solutions

to the equations of motion of D = 11 supergravity,

dG4 = 0 , (1.1)

d ∗11 G4 +
1

2
G4 ∧ G4 = 0 , (1.2)

RAB =
1

12
GAC1C2C3

GB
C1C2C3 − 1

144
gABGC1C2C3C4

GC1C2C3C4 = 0 , (1.3)

with metric and four-form given, respectively, by

ds2
11 = ds2(AdS5) + ds2(KE6), (1.4)

G4 = cJ ∧ J . (1.5)

Here, c is a constant, J is the Kähler form on KE6, and the metrics gµν and gmn for AdS5

and KE6, respectively, are normalised so that their with Ricci tensors are

Rµν = −2c2gµν , Rmn = 2c2gmn. (1.6)

Note. While we were in the process of completing this paper, [20] appeared which, al-

though supersymmetric in the main, section 5 therein has some overlap with our analysis.

1See [14] for the classification of the superymmetric M-Theory solutions containing AdS5.
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2 Consistent truncation of D = 11 supergravity on KE6

For every general supersymmetric solution AdSn ×w MD−n, where ×w denotes warped

product, of a D-dimensional supergravity theory, there exists a consistent truncation of the

D-dimensional theory down to a suitable n-dimensional pure, massless gauged supergrav-

ity [16–18]. For supersymmetric Freund-Rubin backgrounds, the massive supermultiplet

containing the breathing mode of the internal space MD−n can also be retained consis-

tently, together with the supergravity multiplet [6]. In all these cases, the G-structure

on MD−n specified by supersymmetry plays a crucial role in constructing the KK ansatz

which describes the embedding of the retained n-dimensional fields into the D-dimensional

ones. In the case at hand here, despite the lack of supersymmetry of the AdS5 × KE6

background (1.4), (1.5), the Kähler form J of KE6 will still allow us to build a KK ansatz

that consistently includes massive modes, along the lines of [6].

At any rate, there is an argument about which modes one should expect to be able

to keep in the truncation of D = 11 supergravity on KE6. Consider first the particular

case when the internal KE6 is CP 3, which has isometry group SU(4), and for which the

KK spectrum is explicitly known [15]. Following [21], one should be able to truncate

consistently the KK tower of D = 11 supergravity on CP 3 to its SU(4) singlet sector. This

contains the massless graviton, one massive real scalar and one massive real vector [15],

both with mass 12c2. Now, it is precisely the singlet character of these modes under the

relevant SU(4) symmetry of the particular KE6 = CP 3 that makes them expected to be

universal for all KE6 spaces. We can thus predict a consistent truncation of D = 11

supergravity on any KE6 to a D = 5 theory with the field content quoted above. In

particular, no massless vector that could enter the D = 5 N = 2 supergravity multiplet

along with the metric should be expected to survive the truncation, so the resulting D = 5

theory should not correspond to a supergravity.2

Without much further ado, consider the following KK ansatz

ds2
11 = ds2

5 + e2Uds2(KE6), (2.1)

G4 = H4 + H2 ∧ J + cJ ∧ J , (2.2)

where U , H4 and H2 are, respectively, a scalar (the breathing mode of the internal KE6),

a four-form and a two-form on the external five-dimensional spacetime, with line element

ds2
5, and J is again the Kähler form on KE6. By choosing the coefficient in the J ∧ J term

to be the same constant c that appears in the background flux (1.5) we are anticipating

that this coefficient cannot be turned into a dynamical D = 5 field without violating the

D = 11 Bianchi identity for G4. Also, one could have tried to add to the KK ansatz (2.2)

terms involving the holomorphic (3,0)-form Ω defining the complex structure on KE6, but

it is unclear how to deal with those terms when plugging the ansatz into the D = 11

equations of motion.

The KK ansatz (2.1), (2.2) reduces to the background solution (1.4), (1.5) for U = H4 =

H2 = 0, ds2
5 = ds2(AdS5). More generally, direct substitution of (2.1), (2.2) into (1.1)–(1.3)

2This is to be constrasted with the analog situation for skew-whiffed Freund-Rubin backgrounds: in spite

of also breaking all supersymmetry, they do allow for a consistent truncation to a supergravity theory [6].
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shows that the KK ansatz also solves the D = 11 supergravity field equations provided the

D = 5 fields satisfy

dH4 = 0 , (2.3)

dH2 = 0 , (2.4)

d(e6U ∗ H4) + 6cH2 = 0 , (2.5)

d(e2U ∗ H2) + 2cH4 + H2 ∧ H2 = 0 , (2.6)

d(e6U ∗ dU) + 2c2(e−2U − e4U )vol5 −
1

6
e6UH4 ∧ ∗H4 = 0 , (2.7)

Rαβ = −2c2e−8Uηαβ + 6 (∇β∇αU + ∂αU∂βU) +
3

2
e−4U

(

HαλHβ
λ − 1

6
ηαβHλµHλµ

)

+
1

12

(

HαλµνHβ
λµν − 1

12
ηαβHλµνρH

λµνρ

)

. (2.8)

All the dependence on the internal KE6 drops out, leaving fully-fledged D = 5 equations

of motion for the D = 5 fields. This shows the consistency of the truncation.

We can now introduce the Lagrangian of the D = 5 theory and work out the masses

of the various fields. First of all, the Bianchi identities (2.3), (2.4) for H4 and H2 can be

trivially solved by introducing a three-form and a one-form potential such that

H4 = dB3 , (2.9)

H2 = dB1. (2.10)

The Lagrangian that gives rise to the D = 5 equations of motion (2.5)–(2.8) upon variation

of B3, B1, U and the D = 5 metric gµν can then be worked out. It reads

L = e6UR vol5 + 30e6U dU ∧ ∗dU − 1

2
e6UH4 ∧ ∗H4 −

3

2
e2UH2 ∧ ∗H2

+6c2
(

2e4U − e−2U
)

vol5 − B1 ∧ (6cH4 + H2 ∧ H2) , (2.11)

or, in terms of the Einstein frame metric ḡµν = e4Ugµν ,

LEinstein = R̄ v̄ol5 − 18dU ∧ ∗̄dU − 1

2
e12UH4 ∧ ∗̄H4 −

3

2
H2 ∧ ∗̄H2

+6c2
(

2e−6U − e−12U
)

v̄ol5 − B1 ∧ (6cH4 + H2 ∧ H2) , (2.12)

with barred quantities referring to the Einstein frame metric.

It is useful to dualise B3 into a scalar B. In order to do this, define H5 = dH4 and

add the piece

L′ = −BH5 (2.13)

to the Lagrangian (2.12). Integrating out H4 we find that it is now given as

H4 = −e−12U ∗̄H1 , (2.14)

– 4 –
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where we have found it convenient to define

H1 = dB − 6cB1 . (2.15)

Substituting this back into LEinstein + L′ we find the dual Lagrangian

Ldual = R̄ v̄ol5 − 18dU ∧ ∗̄dU − 1

2
e−12UH1 ∧ ∗̄H1 −

3

2
H2 ∧ ∗̄H2

+6c2
(

2e−6U − e−12U
)

v̄ol5 − B1 ∧ H2 ∧ H2 . (2.16)

The masses of the D = 5 fields can now be computed by expanding the La-

grangian (2.16) about the AdS5 vacuum, keeping up to quadratic terms. Doing this, for U

and B1 we find

m2
U = m2

B1
= 12c2 , (2.17)

while B (the scalar dual to B3) is just a Stückelberg field that can be gauged away to give

B1 its mass. As anticipated, the D = 5 theory obtained upon consistent KK truncation of

D = 11 supergravity on KE6, and described by the Lagrangian (2.12) or (2.16), contains

the D = 5 metric, one massive scalar and one massive vector with mass (2.17). When

KE6 = CP 3, the SU(4)-neutrality (table 2 of [15]) and the masses (tables 3 and 4 of [15])

of U and B1 show that these are the modes in the k = 0 level of the (k +3)(k +4)c2 towers

of real scalars and real one-forms, respectively.

We are interested in solutions to the D = 5 field equations (2.3)–(2.8) displaying NRC

symmetry. Rather than working with the full theory, we will consider a suitable further

truncation. There are three further consistent truncations, apparently no longer explained

by a group theory argument as the one above. The first is obtained by setting H4 = H2 = 0,

leaving only the five-dimensional metric and the breathing mode U . The second, leading

to five-dimensional General Relativity with a cosmological constant, is trivially obtained

by insisting on H4 = H2 = 0 and further setting U = 0. The third, which is the one we

are interested in, will be described in the next section.

3 NRC solutions from uplift

It is consistent with the D = 5 equations of motion to set H4 = 6ce−6U ∗ B1, where the

Hodge dual here refers again to the metric appearing in the Lagrangian (2.11), and B1 is

defined in (2.10) . Rather than a further truncation, this just corresponds to gauging away

B3 or, alternatively, the Stückelberg scalar B, as can be seen from equations (2.14), (2.15).

The third possible further truncation referred to above is obtained (having gauged away

B3) by further setting U = 0 (and, thus, H4 = 6c ∗ B1) while restricting B1 to light-

like configurations,

B1 ∧ ∗B1 = 0 , H2 ∧ H2 = 0 . (3.1)

In this case, the equations of motion (2.5)–(2.8) reduce to (3.1) together with

d ∗ H2 + 12c2 ∗ B1 = 0 , (3.2)

Rαβ = −2c2ηαβ +
3

2
HαλHβ

λ + 18c2BαBβ (3.3)

– 5 –
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(with H2 = dB1). Indeed, setting U = 0 and H4 = 6c ∗ B1, equation (2.5) is identically

satisfied; equations (2.6) and (2.7) reduce, respectively, to the second and first conditions

in (3.1); equation (2.3) is obtained by differentiating (3.2); and, finally, the Einstein equa-

tion (2.8) reduces to (3.3).

The equations of motion (3.2), (3.3) can be derived from the Lagrangian3

L = R vol5 + 6c2vol5 −
3

2
H2 ∧ ∗H2 − 18c2B1 ∧ ∗B1 , (3.4)

which was argued in [1] to allow for solutions with metric displaying Schrödinger symmetry.

These solutions should be supported by a light-like massive vector of the form B1 ∝ rzdx+

(see [5]), where z is the dynamical exponent, thus immediately satisfying (3.1). Specifically,

we look for solutions to (3.1), (3.2), (3.3) of the form

ds2
5 = −α2r2z(dx+)2 +

2

c2r2
dr2 +

2

c2
r2

(

−dx+dx− + dx2
1 + dx2

2

)

,

B1 = βrzdx+. (3.5)

where α, β and the dynamical exponent z are constants to be determined. The con-

figuration (3.5) does satisfy the conditions (3.1) and turns out to also solve the equa-

tions (3.2), (3.3) provided that

z(z + 2) = 24 , (3.6)

α2(z2 − 1) = β2(
3

4
z2 + 18). (3.7)

Thus, as in [5], we indeed find solutions for z = 4 (and β = α√
2
) and z = −6 (and β = α

√
7

3
).

By convention z > 0, so we ignore the latter possibility.

The z = 4 solution can now be uplifted to D = 11 with the help of the KK

ansatz (2.1), (2.2). We find

ds2
11 = −α2r8(dx+)2 +

2

c2

dr2

r2
+

2

c2
r2

(

−dx+dx− + dx2
1 + dx2

2

)

+ ds2(KE6) ,

G4 = 12
α

c2
r5dx+ ∧ dr ∧ dx1 ∧ dx2 − 2

√
2αr3dx+ ∧ dr ∧ J + cJ ∧ J . (3.8)

This is a new (non-supersymmetric) M-Theory solution dual to a NRC field theory in

spatial dimension d = 2 with dynamical exponent z = 4. One can generalise this solu-

tion and consider more general ansatze for D = 11 supergravity solutions dual to d = 2

non-relativistic conformal field theories with dynamical exponent z, where the internal

directions still correspond to a KE6 space. We now turn to this point.

3This D = 5 theory, with even the same mass for the vector B1 if we choose c =
√

2, was first discussed

in section 4.2 of [5], but the D = 5 parent theories with Lagrangian (2.16) above and (4.21) of [5] are

very different. As in [5, 6], the Lagrangian (3.4) only reproduces the equations (3.2), (3.3) and not the

light-like condition (3.1). Since (3.1), (3.2), (3.3) can be consistently obtained upon truncation of D = 11

supergravity on KE6, any choice of five-dimensional metric and lightlike B1 (thus subject to (3.1)) which

also solves the equations of motion (3.2), (3.3) that derive from the Lagrangian (3.4), can be safely uplifted

to D = 11.

– 6 –
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4 Some generalisations

As we have just mentioned, the D = 11 solution (3.8) is locally invariant under Sch4(1, 2).

In particular, the scale invariance acts on coordinates as [2]

(x+, x−, xi, r) → (λzx+, λ2−zx−, λxi, λ
−1r) , i = 1, 2 (4.1)

(with z = 4 in (3.8)), while leaving the KE6 coordinates unchanged. Following [7, 8], we

can generalise the metric in (3.8) as:

ds2
11 =

2

c2

[

− f0r
2z(dx+)2 − r2dx+(dx− + rz−2C1) +

1

r2
dr2

+r2
(

dx2
1 + dx2

2

)

]

+ ds2(KE6) , (4.2)

where C1 is a one-form and f0 a function, both of them defined on the internal KE6.

Both C1 and r2zf0, serve the same role of breaking the SO(2, 4) isometry of the original

AdS5 × KE6 metric (1.4) down to Schz(1, 2).

An ansatz for the accompanying four-form flux may be constructed by considering

the forms invariant under Schz(1, 2) symmetry (see [22]), though the equations of motion

constrain the candidate forms. The specific ansatz we then consider for the four-form flux is

G4 = − 1

z + 2
d(µ0r

z+2dx+ ∧ dx1 ∧ dx2) − 1

z
d(µ2 ∧ rzdx+) + cJ ∧ J , (4.3)

where, in general, µ0 is a function and µ2 a two-form, both defined on KE6. The latter

can be taken to be proportional to the Kähler form on KE6, as for the uplifted z = 4

solution (3.8), but other choices are also possible (see subsection 4.2 below). Indeed, the

solution (3.8) is recovered from (4.2), (4.3) by setting C1 = 0, f0 = 1
2
c2α2, µ0 = 12α

c2
and

µ2 = −2
√

2αJ , for some constant α. More generally, the non-trivial mixing of external and

KE6 coordinates in the metric (4.2) will prevent it from being obtainable as the uplift of

any D = 5 metric. The requirement that (4.2), (4.3) do solve the equations of motion (1.1)–

(1.3) of D = 11 supergravity leads to restrictions and relations for f0, C1, µ0 and µ2. In

the following, we will spell out several interesting cases.

4.1 A solution with z = 2

We can find a D = 11 supergravity solution with dynamical exponent z = 2 by setting, for

some constant α, f0 = 13α
4c4

, choosing C1 such that dC1 = αJ , while writing µ0 = 12α
√

2

c5
,

µ2 = −2α
c3

J so that the flux (4.3) reads

G4 =
12α

√
2

c5
r3dx+ ∧ dr ∧ dx1 ∧ dx2 −

2α

c3
rdx+ ∧ dr ∧ J + cJ ∧ J . (4.4)

A generalisation of this solution appeared previously in [20], where the internal space is a

variant of CP 3 [13].

– 7 –
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4.2 A class of solutions with z ≥
√

3

Setting C1 = 0 in the metric (4.2) and µ0 = 0, µ2 = 0 in (4.3) (which takes the flux back

to its background value (1.5)), some calculation reveals that the resulting combination of

metric and four-form provides a solution of D = 11 supergravity if f0 is an eigenfunction

of the Laplacian ∆KE ≡ ∗d ∗ d + d ∗ d∗ on KE6 with eigenvalue 2(z2 − 1)c2:

∆KEf0 = 2(z2 − 1)c2f0. (4.5)

This class of solutions thus provides a D = 11 counterpart of the Type IIB solutions first

discussed in [7].

For the particular case KE6 = CP 3, these eigenvalues are k(k + 3)c2, k = 0, 1, . . .,

with the corresponding eigenfunctions transforming in the (k0k) irrep of SU(4) [15, 23].

Ruling out k = 0, which just corresponds to a space locally isometric to AdS5 × KE6, we

have a sequence of families of solutions with dynamical exponents

zk =

√

1 +
1

2
k(k + 3) , k = 1, 2 . . . , (4.6)

thus obeying the bound

zk ≥
√

3 . (4.7)

For each k = 1, 2, 3 . . ., this class contains a family of dim(k0k) = 15, 84, 300, . . . super-

gravity solutions with the dynamical exponent zk in (4.6).

As noted in [7], this class of solutions should be unstable. Stability could be restored

in [7] by appropriately turning on fluxes. We can try to do the same here by setting, for

simplicity, µ2 to be proportional to the Kähler form J . In this case, only for z = 4 do we

find a solution with metric (4.2) (with C1 = 0), supported by the flux

G4 = αr5dx+ ∧ dr ∧ dx1 ∧ dx2 −
αc2

3
√

2
r3dx+ ∧ dr ∧ J + cJ ∧ J , (4.8)

for any constant α. In this case, f0 gets shifted by a positive term proportional to α2,

which can be tuned to render the solution stable [7]. The shifted f0 still fulfils (4.5), now

with eigenvalue 30c2, corresponding to z = 4. We are unaware, however, of any KE6 space

for which this eigenvalue is permissible.

Alternatively, following [8–10], rather than setting µ2 to be proportional to the Kähler

form, one may take it to be primitive and transverse.4 Setting, for convenience, µ0 =

C1 = 0, a calculation shows that the configuration (4.2), (4.3) is a solution to D = 11

supergravity provided

∆KEf0 + 2(z2 − 1)c2f0 =
c4

4
|µ2|2 +

c2

2z2
|dµ2|2,

∆KEµ2 =
1

2
z(z + 2)c2µ2, (4.9)

4A (p, q)-form Y p,q on a Kähler space is said to be primitive if its contraction with the Kähler form

vanishes, JmnY p,q

mn... = 0, and transverse if ∗d ∗ Y p,q = 0.

– 8 –
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where |µ2|2 = 1
2!

µ2 abµ
ab
2 , etc. Now, f0 has devolved the Laplacian eigenvector character

upon µ2, which corresponds to a two-form eigenfunction with eigenvalue 1
2
z(z+2)c2. In the

special case KE6 = CP 3, the eigenvalues of the Laplacian acting on transverse, primitive

(1, 1)-forms (respectively, (2, 0)-forms) are (k + 2)(k + 3)c2 (respectively, (k + 3)(k + 4)c2),

for k = 0, 1, . . . [15, 23]. We thus see that solutions to (4.9) correspond to NRC gravity

duals with dynamical exponents bounded below by z ≥ −1 +
√

13 (respectively, z ≥ 4), if

µ2 is a chosen to be (the real part of) a (1, 1)-form (respectively, (2, 0)-form). See [10] for a

discussion of a solving technique for systems of equations like (4.9). It would be interesting

to study the stability of this class of solutions.

5 Final comments

We have constructed solutions of D = 11 supergravity dual to NRC field theories in 2

spatial dimensions and with different values of the dynamical exponent z. They correspond

to suitable deformations of the class of solutions AdS5 × KE6, that break the SO(2, 4)

symmetry down to its Schrödinger subalgebra Schz(1, 2). Important insight was obtained

by first dealing with a simpler, particular solution with z = 4. Specifically, D = 11

supergravity reduced on the internal KE6 truncates consistently to a D = 5 gravity theory

involving a massive vector. A suitable solution of this theory, with z = 4, was found

and subsequently uplifted to eleven-dimensions. We also discussed a more general class

of D = 11 supergravity solutions, locally invariant under Schz(1, 2), that contains this

solution, along with other examples that can no longer be obtained upon uplift. We are

able to find explicitly a solution with z = 2, a class of solutions with dynamical exponents

z ≥
√

3, and implicitly, solutions with z ≥ −1 +
√

13 and z ≥ 4.

The Schrödinger algebra Schz(1, d) is not the only NRC symmetry one may consider. In

fact, there also exists a conformal version of the Galilean algebra that, unlike Schz(1, d), can

be obtained as an Inönü-Wigner contraction of the relativistic conformal algebra so(2, d +

2). Some issues regarding the Galilean conformal algebra have been recently discussed,

including its supersymmetrisation [24–26] and its implementation, both in the dual field

theories and the gravity bulk [27, 28]. As pointed out in [28], a drawback of backgrounds

with this conformal Galilean symmetry is that, in contrast to Schz(1, d)-invariant ones, their

metrics exhibit a non-Lorentzian signature. While this would require better understanding,

progress on the way NRC symmetries are implemented in gravity duals may be achieved by

a systematic characterisation [19] of Type IIB and M-Theory backgrounds with Schz(1, d)

symmetry, for generic values of z and d.
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